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We present an adaptive recommendation system named TalkMine, which is based on
the combination of Evidence from different sources. It establishes a mechanism for
automated conversati on between recommendation agents, in order to gather theinterests
of individual users of web sites and digital libraries. This conversation process is
enabled by measuring the uncertainty content of knowledge structures used to store
evidence from different sources. TalkMine also |leads different databases or websitesto
learn new and adapt existing keywordsto the categories recognized by its communities
of users. TalkMine is currently being implemented for the research library of the Los
Alamos National Laboratory under the Active Recommendation Project
(http://arp.lanl.gov).

The process of identification of the interests of users relies on a process of combining
severa fuzzy sets into evidence sets, which models an ambiguous “and/or” linguistic
expression. Theinterest of usersisfurther fine-tuned by ahuman-machine conversation
algorithm used for uncertainty reduction. Documents are retrieved according to the
inferred user interests. Finally, the retrieval behavior of all users of the system is
employed to adapt the knowledge bases of queried information resources. This
adaptation alows information resources to respond well to the evolving expectations
of users.

1 The Active Recommendation Project

The Active Recommendation Project (ARP), part of the Library Without Walls Project, at
the Research Library of the Los Alamos National Laboratory is engaged in research and
development of recommendation systems for digital libraries. The information resources
avallable to ARP are large databases with academic articles. These databases contain
bibliographic, citation, and sometimes abstract information about academic articles. Typical
databases are SciSearch® and Biosis®; the first contains articles from scientific journals from
severa fields collected by 1Sl (Institute for Scientific Indexing), while the second contains
more biologically oriented publications. We do not manipulate directly the records stored in



these information resources, rather, we created arepository of XML (about 3 million) records
which point us to documents stored in these databases [1].

1.1  Characterizing the Knowledge stored in an Information Resource

These matrices holding measures of closeness, formally, are proximity relations [2, 3]
because they are reflexive and symmetric fuzzy relations. Their transitive closures are known
as similarity relations (Ibid). The collection of this relational information, all the proximity
relations as well as A and C, is an expression of the particular knowledge an information
resource conveystoitscommunity of users. Noticethat distinct information resourcestypically
share avery large set of keywords and records. However, these are organized differently in
each resource, leading to different collections of relational information. Indeed, each resource
is tailored to a particular community of users, with a distinct history of utilization and
deployment of information by its authors and users. For instance, the same keywords will be
related differently for distinct resources. Therefore, we refer to the relational information of
each information resource as a Knowledge Context (More detailsin [4]).

In [1] we have discussed how these proximity relations are used in ARP. However, the
ARP recommendation system described in this article (TalkMine) requires only the Keyword
Semantic Proximity (KSP) matrix, obtained from A by the following formula:
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The semantic proximity between two keywords, k and k,, dependson the sets of records
indexed by either keyword, and the intersection of these sets. N(k) is the number of records
keyword k; indexes, and N, (k, k) the number of records both keywords index. This last
quantity isthe number of elementsin the intersection of the sets of records that each keyword
indexes. Thus, two keywords are near if they tend to index many of the same records. Tablel
presents the values of KSP for the 10 most common keywords in the ARP repository.

Tablel: Keyword Semantic Proximity for 10 most frequent keywords

cell studi system express protein model activ human rat patient

cell 1.000 0.022 0.019 0.158 0.084 0.017 0.085 0.114 0.068 0.032
studi  0.022 1.000 0.029 0.013 0.017 0.028 0.020 0.020 0.020 0.037
system 0.019 0.029 1.000 0.020 0.017 0.046 0.022 0.014 0.021 0.014
express 0.158 0.013 0.020 1.000 0.126 0.011 0.071 0.103 0.078 0.020
protein 0.084 0.017 0.017 0.126 1.000 0.013 0.070 0.061 0.041 0.014
model 0.017 0.028 0.046 0.011 0.013 1.000 0.016 0.016 0.026 0.005
activ. 0.085 0.020 0.022 0.071 0.070 0.016 1.000 0.058 0.053 0.021
human 0.114 0.020 0.014 0.103 0.061 0.016 0.058 1.000 0.029 0.021
raa  0.068 0.020 0.021 0.078 0.041 0.026 0.053 0.029 1.000 0.008
patient 0.032 0.037 0.014 0.020 0.014 0.005 0.021 0.021 0.008 1.000

From the inverse of KSP we obtain a distance function between keywords:
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d isadistance function becauseit is anonnegative, symmetric real-valued function such that

d(k, k) = 0. It is not an Euclidean metric because it may violate the triangle inequality:
d(k;, k) < d(kj, k;) + d(ks, k,) for some keyword k,. This means that the shortest distance
between two keywordsmay not bethedirect link but rather anindirect pathway. Such measures
of distance are referred to as semi-metrics [5].

1.2  Characterizing Users

Users interact with information resources by retrieving records. We use their retrieval
behavior to adapt the respective knowledge contexts of theseresources (storedinthe proximity
relations). But before discussing this interaction, we need to characterize and define the
capabilities of users: our agents. The following capabilities are implemented in enhanced
“browsers’ distributed to users.

1 Present interests described by a set of keywords {k;, -, k.}.

2. History of Information Retrieval (IR). This history isalso organized as a
knowledge context as described in 2.1, containing pointers to the records the
user has previously accessed, the keywords associated with them, aswell as
the structure of this set of records. Thisway, we treat users themselves as
information resources with their own specific knowledge contexts defined by
their own proximity information.

3. Communication Protocol. Users need a 2-way means to communicate with
other information resources in order to retrieve relevant information, and to
send signals leading to adaptation in all partiesinvolved in the exchange.

Regarding point 2, the history of IR, notice that the same user may query information
resourceswith very distinct sets of interests. For example, one day auser may search databases
as a biologist looking for scientific articles, and the next as a sports fan looking for game
scores. Therefore, each enhanced browser allows usersto definedifferent “ personalities’, each
one with its distinct history of IR defined by independent knowledge contexts with distinct
proximity data (see Figure 1).
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Figure 1. Each user can store different personalities in enhanced browsers. Each personality is stored as
aknowledge context created from previous history of IR. The actual identity of the user can remain
private.

Becausetheuser history of IR isstored in personal browsers, information resources do not
store user profiles. Furthermore, all the collective behavior algorithms used in ARP do not
require the identity of users. When users communicate (3) with information resources, what
needs to be exchanged is their present interests or query (1), and the relevant proximity data
from their own knowledge context (2). In other words, users make aquery, and then sharethe
relevant knowledge they have accumulated about their query, their “world-view” or context,
from a particular personality, without trading their identity. Next, the recommendation
algorithms integrate the user’s knowledge context with those of the queried information
resources (possibly other users), resulting in appropriate recommendations. Indeed, the
algorithms we use define acommunication protocol between knowledge contexts, which can
be very large databases, web sites, or other users. Thus, the overall architecture of the
recommendation systemswe usein ARP is highly distributed between information resources
and all the users and their browsing personalities (see Figure 2).
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Figure 2: The algorithms we use in ARP define a distributed architecture based on communication
between knowledge contexts from information resources and users alike.

The collective behavior of all usersis also aggregated to adapt the knowledge contexts of all
intervening information resources and users alike. This open-ended learning process [6] is
enabled by the TalkMine recommendation system described below.

2 Categories and Distributed Memory

21 A Modd of Categorization from Distributed Artificial Intelligence

TalkMine is a recommendation system based on a model of linguistic categories [7],
which are created from conversation between users and information resources and used to re-
combine knowledge aswell asadapt it to users. Themodel of categorization used by TalkMine
is described in detail in [6,7,8]. Basically, as also suggested by [9], categories are seen as
representations of highly transient, context-dependent knowledge arrangements, and not as
model of information storageinthebrain. Inthissense, in human cognition, categoriesare seen
as linguistic constructs used to store temporary associations built up from the integration of
knowledge from several neural sub-networks. The categorization process, driven by language
and conversation, serves to bridge together several distributed neural networks, associating
tokens of knowledge that would not otherwise be associated in theindividual networks. Thus,
categorization is the chief mechanism to achieve knowledge recombination in distributed
networks leading to the production of new knowledge [6, 7].

TalkMine applies such amodel of categorization of distributed neural networksdriven by
language and conversation to recommendation systems. | nstead of neural networks, knowledge
is stored in information resources, from which we construct the knowledge contexts with
respective proximity relations described in section 1. TalkMine is used as a conversation



protocol to categorize the interests of users according to the knowledge stored in information
resources, thus producing appropriate recommendations and adaptation signals.

2.2  Distributed Memory is Stored in Knowledge Contexts

A knowledge context of an information resource (section 1.1) is not a connectionist
structure in a strong sense since keywords and records are not distributed as they can be
identified in specific nodes of the network [10]. However, the same keyword indexes many
records, the same record is indexed by many keywords, and the same record is typically
engaged in acitation (or hyperlink) relation with many other records. Losing or adding afew
records or keywords does not significantly change the derived semantic and structural
proximity relations (section 1) of alarge network. In this sense, the knowledge conveyed by
such proximity relations is distributed over the entire network of records and keywords in a
highly redundant manner, asrequired of sparse distributed memory models[11]. Furthermore,
Clark [9] proposed that connectionist memory devices work by producing metrics that relate
the knowledge they store. As discussed in section 1, the distance functions obtained from
proximity relations are semi-metrics, which follow al of Clark’ srequirements[6]. Therefore,
we can regard aknowledge context effectively asadistributed memory bank. Below wediscuss
how such distributed knowledge adapts to communities of users (the environment) with
Hebbian type learning.

In the TalkMine system we use the KSP relation (formula (1)) from knowledge contexts.
It conveys the knowledge stored in an information resourcein terms of ameasure of proximity
among keywords. Thisproximity relation isuniqueto each information resource, reflecting the
semantic relationships of therecords stored in the latter, which in turn echo the knowledge of
its community of users and authors. TalkMine is a content-based recommendation system
because it uses a keywords proximity relation. Next we describe how it is aso collaborative
by integrating the behavior of users. A related structural algorithm, also being developed in
ARP, isdescribed in [1].

3 Evidence Sets: Capturing the Linguistic “And/Or” in Queries

3.1  Evidence Sets Model Categories

TalkMine uses a set structure named evidenceset [ 7, 8, 12, 13], an extension of afuzzy set
[14] , to model of linguistic categories. The extension of fuzzy setsis based on the Dempster-

Shafer Theory of Evidence (DST) [15], which isdefined in terms of aset function m: P (X) —
[0,1], referred to as abasic probability assignment, such that m(z) =0and ) .., m(A) =1. P
(X) denotes the power set of X, and A any subset of X. The value m(A) denotes the proportion
of all available evidence which supportsthe claim that A € £ (X) contains the actual value of

avariable x. DST isbased on apair of nonadditive measures: belief (Bel) and plausibility (PI)
uniquely obtained from m. Given abasic probability assignment m, Bel and Pl are determined

for al A € P (X) by the equations:

Bel(A)= 4 m(B), PI(A)= & m(B)

Bi A BNA £



the expressions above imply that belief and plausibility are dual measures related
by: PI(A)=1- Bel(A°), foral A e P (X), where A° represents the complement of Ain X. Itis
also true that Bel(A)<PI(A) for all A € # (X). Notice that "m(A) measures the belief one

commits exactly to A, not the total belief that one commitsto A." [15, page 38] Bel(A), the
total belief committed to A, isinstead given by the sum of all the values of mfor all subsets of
A

Anyset Ae P (X) withm(A) >0iscalled afocal element. A body of evidenceis defined
by the pair (7, m), where ¥ represents the set of all focal elementsin X, and mthe associated

basic probability assignment. The set of al bodies of evidence is denoted by B(X).
An evidence set A of X, isdefined for all x € X, by amembership function of the form:

A(X) = (F7, m) € B[O, 1]
where BJ[0, 1] isthe set of al possible bodies of evidence (¥ *, m) on 1, the set of all
subintervalsof [0,1]. Such bodies of evidence are defined by abasi c probability assignment m*
on 7, for every xin X. Thus, evidence sets are set structures which provide interval degrees of

membership, weighted by the probability constraint of DST. They are defined by two
complementary dimensions. membership and belief. The first represents an interval (type-2)
fuzzy degree of membership, and the second a subjective degree of belief on that membership
(see Figure 3).

1
el
(1,
n(1))
0 -~ ~

Figure 3: Evidence Set with 3 focal elementsfor each x.

Each interval of membership I, with its correspondent evidentia weight nmv( 1)),
represents the degree of importance of a particular element x of X in category A according to
a particular perspective. Thus, the membership of each element x of an evidence set A is
defined by distinct interval srepresenting different, possibly conflicting, perspectives. Thisway,
categories are modeled not only as sets of elements with a membership degree (or
prototypicality [7]), but as sets of elements which may possess different interval membership
degrees for different contexts or perspectives on the category.

The basic set operations of complementation, intersection, and union have been defined
and establish a belief-constrained approximate reasoning theory of which fuzzy approximate
reasoning and traditional set operations are special cases[7, 8]. Intersection (Union) is based



on the minimum (maximum) operator for the limits of each of the intervals of membership of
an evidence set. For the purposes of thisarticle, the detail s of these operationsare not required,
please consult [7] for more details.

3.2  TheUncertainty Content of Evidence Sets

Evidence sets are set structureswhich provide interval degrees of membership, weighted
by the probability constraint of DST. Interval Vaued Fuzzy Sets (IVFS), fuzzy sets, and crisp
sets are all specia cases of evidence sets. The membership of an element x in acrisp set is
perfectly certain: the element is either a member of the set or not. The membership of an
element x in fuzzy set is defined as degree value in the unit interval; this means that the
membership is fuzzy because the element is a member of the set with degree A(x), and
simultaneously, is also not amember with complementary degree 1-A(x). The membership of
anelement xinanIVFSisdefined asaninterval | containedintheunitinterval; thismeansthat
the membership isboth fuzzy and nonspecific[12, 16], becausethe element isamember of the
set with anonspecific degreethat can vary intheinterval |. Finally, membership of an element
xin an evidence set is defined as a set of intervals constrained by a probability restriction; this
means that the membership is fuzzy, nonspecific, and conflicting, since the element is a
member of the set with several degreesthat vary in each interval with some probability.

To capture the uncertainty content of evidence sets, the uncertainty measuresof [17] were
extended from finite to infinite domains [13]. The total uncertainty, U, of an evidence set A
was defined by: U(A) = (IF(A), IN(A), IS(A)). The three indices of uncertainty, which vary
between 1and 0, IF (fuzziness), IN (nonspecificity), and I S(conflict) wereintroduced in 8, 13],
where it was also proven that IN and IS possess good axiomatic properties wanted of
information measures. IF isbased on [18, 19] and [2] measure of fuzziness. IN is based on the
Hartley measure [13], and IS on the Shannon entropy as extended by [17] into the DST
framework. For the purposes of thisarticle, al we need to know isthat these measuresvary in
the unit interval, for full details see [13].

3.3  Obtaining an Evidence Set from Fuzzy Sets. The Linguistic “ And/Or

Fundamental to the TalkMine algorithm is the integration of information from different
sourcesinto an evidence set, representing the category of topics (described by keywords) auser
isinterested at aparticular time. In particular, as described bel ow, these sources of information
contribute information as fuzzy sets. This way, we need a procedure for integrating several
fuzzy setsinto an evidence set.

Turksen [20] proposed ameansto integratefuzzy setsinto I VFS (or type-2 fuzzy sets). He
later proposed that every time two fuzzy sets are combined, the uncertainty content of the
resulting structure should be of ahigher order, namely, the fuzziness of two fuzzy sets should
be combined into the fuzziness and nonspecificity of an IVFS [16]. Turksen's Fuzzy Set
combinationisbased on the separation of the disunctiveand conjunctivenormal formsof logic
compositionsin fuzzy logic. A disunctive normal form (DNF) isformed with the disunction
of some of the four primary conjunctions, and the conjunctive normal form (CNF) isformed
with the conjunction of some of the four primary digunctions, respectively:
AnB, ANB, Ans, AnBand aue, auB, aUs, AUB. INntwo-valued logic the CNF and DNF of alogic com-
position are equivalent: CNF = DNF. Turksen [20] observed that in fuzzy logic, for certain
families of conjugate pairs of conjunctions and digjunctions, we haveinstead DNF ¢ CNF for
some of the fuzzy logic connectives. He proposed that fuzzy |ogic compositions could be rep-
resented by IVFSsgiven by theinterval [DNF, CNF] of the fuzzy set connective chosen [20].



Using Turksen’ s approach, the union and intersection of two fuzzy setsF, and F, result in the
two following IVFS, respectively:

WVV(x) = gR(x) U F(x),R(x) U (X

e DNF CNF u (3)
V)= 8RO N FB).RK) N KX

e DNF CNF u

where, ACLdF B=AUB, AU B=(An B)U(ANB)U(ANB), AN B=(AUB) n(auB)n(aus), and

A N B=ANB, for any two fuzzy sets A and B, with union and intersection operations chosen

from thefamilies of t-norms and t-conorms following the appropriate axiomatic requirements
[2]. In TalkMine only the traditional maximum and minimum operators for union and
intersection, respectively, are used. Clearly, al other t-norms and t-conormswould also work.

The intervals of membership obtained from the combination of two fuzzy sets can be
interpreted as capturing theintrinsi c nonspecificity of the combination of fuzzy setswith fuzzy
set operators. Due to the introduction of fuzziness, the DNF and CNF do not always coincide.
This lack of coincidence reflects precisely the nonspecificity inherent in fuzzy set theory:
because we can arrive at different results depending on which normal form we choose, the
combination of fuzzy setsisambiguous. Turksen[16] suggested that this ambiguity should be
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Figure 4: Combination of two fuzzy sets F, and F, into two IVFS according to formulae 3. The union IVFS,
IV isafuzzy set since DNF and CNF coincide, which does not happen for V™.

treated as nonspecificity and captured by intervals of membership. In this sense, fuzziness
“breeds’ nonspecificity. Figure 4 depictsthe construction of two IVFSfrom two fuzzy setsF,
and F, according to the procedure described by formulae (3).

Formulae (3) constitute a procedure for calculating the union and intersection IVFS from
two fuzzy sets, whichinlogictermsrefer tothe“Or” and“ And” operators. Thus, 1V” describes
thelinguisticexpression“F, or F,", whilelV" describes“F, and F,", — capturing both fuzziness
and nonspecificity of the particular fuzzy logic operators employed. However, in common
language, often “and” is used as an unspecified “and/or”. In other words, what we mean by the
statement “| am interested in x and y”, can actually be seen as an unspecified combination of



“xandy” with“x ory”. Thisis particularly relevant for recommendation systems where it is
precisely this kind of statement from users that we wish to respond to.

One use of evidence setsis as representations of the integration of both IV~ and IV into
alinguistic category that expresses this ambiguous “and/or”. To make this combination more
general, assume that we possess an evidential weight m, and m, associated with each F, and
F, respectively. These are probabilistic weights (m, + m, = 1) which represent the strength we
associ ate with each fuzzy set being combined. Thelinguistic expression at stake now becomes
“l am interested in x and y, but | value x more/less than y”. To combine all thisinformation
into an evidence set we use the following procedure:

ES(x) = {{1IVY 00, min(my, m,) ), (1), max(my, m ) )}

Because 1V is the less restrictive combination, obtained by applying the maximum
operator, or suitablet-normtotheoriginal fuzzy setsF, and F,, itsevidential weightisacquired
viathe minimum operator of the evidential weights associated with F, and F,. Thereverseis
true for IV". Thus, the evidence set obtained from (4) contains IV~ with the lowest evidence,
and V" with the highest. Linguistically, it describes the ambiguity of the “and/or” by giving
the strongest belief weight to “and” and the weakest to “or”. It expresses: “I am interested in
x andy to ahigher degree, but | am alsointerested in x or y to alower degree”’. Thisintroduces
the third kind of uncertainty: conflict. Indeed, the ambiguity of “and/or” rests on the conflict
between theinterestin“and” andtheinterestin“or”. Thisevidence set capturesthethreeforms
of uncertainty discussed in Section 2.3: fuzziness of the origina fuzzy sets F, and F,,
nonspecificity of IV~ and IV, and conflict between these two asthey areincluded in the same
evidence set with distinct evidential weights. Figure 5 depicts an example of the evidence set
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Figure 5: Evidence Set obtained from F, and F, and respective uncertainty content

obtained from F, and F,, as well as its uncertainty content (fuzziness. Nonspecificity, and
conflict).

Finally, formula (4) can be easily generalized for a combination of n fuzzy sets F; with
probability constrained weights m;:

1 . ;
| min|m, m; max{m, m; | \y
ES00 = 1| Ve WL#’ Ve, (x»%y ®

i : b

(4)



This procedure can be used to combine evidencein theform of fuzzy setsfrom nweighted
sources. It produces interval s obtained from the combination of each pair of fuzzy setswith a
union and an intersection operator. Intersection is given the highest weight. The evidence set
obtained is the ambiguous, common language, “and/or” for nitems.

4 TalkMine: I ntegrating Several Sour ces of Knowledge via Conver sation

4.1  Inferring User Interest

The act of recommending appropriate documentsto a particular user needsto be based on
theintegration of information from the user (with her history of retrieval) and from the several
information resources being queried. With TalkMinein particular, wewant to retrieverel evant
documents from several information resources with different keyword indexing. Thus, the
keywords the user employsin her search, need to be “ decoded” into appropriate keywordsfor
each information resource. Indeed, the goal of TalkMineisto project the user interestsinto the
distinct knowledge contexts of each information resource, creating a representation of these
interests that can capture the perspective of each one of these contexts.

Evidence Sets were precisely defined to model categories (knowledge representations)
which can capture different perspectives. Asdescribed in Section 1.2, the present interests of
each user aredescribed by aset of keywords{k;, -, k;} . Using thesekeywords and the keyword
distance function (2) of the several knowledge contexts involved (one from the user and one
from each information resource being queried), the interests of the user, “seen” from the
perspectivesof the several information resources, can beinferred asan evidence category using
(5).

Let us assume that r information resources R, areinvolved in addition to the user herself.
The set of keywords contained in all the participating information resourcesis denoted by K.

Asdescribed in Section 1, each information resource is characterized as a knowledge context
containing a KSP relation (1) among keywords from which a distance function d is obtained
(cfr. (2)). d, isthe distance function of the knowledge context of the user, while d,...d, arethe
distance functions from the knowledge contexts of each of the information resources.

4.1.1 Spreading Interest Fuzzy Sets

For eachinformation resource R, and each keyword k, inthe user’ s present interests{ k;, -,
k,}, aspreading interest fuzzy set F,, is calculated using d;:

e (-a.dt(k,ku)z) u
Ft,u(k)= maxée el kl R,t=1..r,u=1..p
e o]

Thisfuzzy set contains the keywords of R, which are closer than € to k,, according to an
exponential function of d.. F,, spreads the interest of the user in k, to keywords of R, that are
near according to d,. The parameter o controls the spread of the exponential function. F,
represents the set of keywords of R, which are near or very related to keyword k,. Because the
knowledge context of each R containsadifferent d, each F,, will also beadifferent fuzzy set
for the same k,, possibly even containing keywords that do not exist in other information
resources. There exist atotal of n = r.p spreading interest fuzzy sets F, .. Figure 6 depicts a
generic F .

(6)
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Figure 6: The exponential membership function of F,, (k) spreads the interest of a user on
keyword k,, to close keywords according to distance function d, (k) for each information
resource R.

4.1.2 Combining the Perspectives of Different Knowledge Contexts on the User Interest

Assume now that the present interests of the user {k,, -, k} are probabilistically
constrained, that is, thereis a probability weight associated with each keyword: ..., i1, such
that p, + ... + p, = 1. Assume further that the intervening r information resources R, are also
probabilistically constrained with weights: v,,..., v, such that v, + ... + v, = 1. Thus, the
probabilistic weight of each spreading interest fuzzy set F,= F,,, wherei = (t-1)p + u, is
m = Vi.Hy

To combine the n fuzzy sets F; and respective probabilistic weights m, formula (5) is
employed. Thisresultsin an evidence set ES(k) defined on %, which represents the interests

of the user inferred from spreading the initial interest set of keywords in the knowledge
contexts of the intervening information resources. The inferring process combines each F,,
withthe*“and/or” linguistic expression entailed by formula(5). Each F, , containsthekeywords
related to keyword k, in the knowledge context of information resource R, that is, the
perspective of R, on k,. Thus, ES(k) contains the “and/or” combination of all the perspectives
on eachkeywordk, € {kj, -, k)} from each knowledge context associated with al information
resources R.

As an example, without loss of generality, consider that the initial interests of an user
contain one single keyword k;, and that the user is querying two distinct information resources
R, and R,. Two spreading interest fuzzy sets, F, and F,, are generated using d, and d,
respectively, with probabilistic weights m=v, and m,=v,. ESK) is easily obtained straight
from formula (4). This evidence set contains the keywords related to k, in R, “and/or” the
keywords related to k; in R,, taking into account the probabilistic weights attributed to R, and
R,. F, isthe perspective of R, on k; and F, the perspective of R, on k;.

4.2  Reducing the Uncertainty of User I nterests via Conversation

Theevidence set obtained in Section 4.1 with formulas (5) and (6) isafirst cut at detecting
the interests of a user in a set of information resources. But we can compute a more accurate
interest set of keywords using an interactive conversation process between the user and the
information resources being queried. Such conversation is an uncertainty reducing process
based on Nakamuraand Iwai’ s[21] IR system, and extended to Evidence Setsby Rocha[6, 7].



In addition to the evidence set ES(K) constructed in Section 4.1, a fuzzy set Fy(K) is
constructed to contain the keywords of the knowledge context R, of the user which are close
totheinitia interest set {k;, -, k;} according to distance function d,. As discussed in Section
1, the user’s history of IR isitself characterized as a knowledge context R, with its own KSP
relation and derived distance function d,. F,(k) isgiven by:

R = U Fou( 0

where F, (K) is calculated using formula (6). F(K) represents the perspective of the user,
from her history of retrieval, on all keywords {k;, -, k;} . Given ES(k) and F(k), for a default
value of o=, the algorithm for TalkMine is as follows:

1. Calculate the uncertainty of ES(K) in its forms of fuzziness, nonspecificity, and
conflict (see Section 3.2). If total uncertainty is below a pre-defined small value
the process stops, otherwise continue to 2.
The most uncertain keyword k; € ES(K) is selected.
If k € R,, then goto 4 (AUTOMATIC), else goto 6 (ASK).
If Fy(k) > 0.5+, then goto 7 (YES).
If Fo(k) < 0.5-0, then goto 8 (NO), else goto 6 (ASK).
ASK user if sheisinterested in keyword k. If answer isyes goto 7 (YES), else
goto 8 (NO).
An evidence set YES(K) is calculated using the procedure of section 4.1 for a
single keyword k and all r information resources R. The spread of the
exponential functionsis controlled with parameter o so that answers to previous
keywords k are preserved. ES(K) is then recal culated as the evidence set union of
YES(K) and ES(K) itself.
8. An evidence set NO(K) is calculated as the complement of YES(K) used in 7.
ES(K) isthen recalculated as the evidence set intersection of NO(k) and ES(k)
itself.
9. Goto 1.

The parameter 6 controls how much participation is required from the user in this
interactive process, and how much is automatically deduced from her own knowledge context
used to produce F4(k). 0 € [0, 0.5]; for 6 = 0, al interaction between user and information
resources is mostly automatic, as answers are obtained from Fy(k), except when k ¢ Ry, for
0 = 0.5, all interaction between user and information resources requires explicit answersfrom
the user. If the user chooses not to reply to a question, the answer is taken as NO. Thus, &
allows the user to choose how automatic the question-answering process of TalkMines.

Regarding the change of spread employed in steps 7 and 8 for the construction of the
YES(k) and NO(k) evidence sets. A list of the keywords the user (or F,(k) automatically) has
responded YES or NO to is kept. The membership value of these keywords in the final ES(k)
produced must be 1 or O, respectively. Thus, the union and intersections of ES(k) with Y ES(K)
and NO(K) in 7 and 8, must be defined in asuch away asto preserve these values. If the spread
obtained with o, would ater the desired values, then anew o isemployed in formula(6) so that
the original values are preserved +e. Because of this change of spreading inference of the
Y ES(K) and NO(k) evidence sets, the sequence of keywords sel ected by the question-answering
processin step 2 affectsthefinal ES(k). That is, the selection of adifferent keyword may result
in adifferent ESK).

Thefinal ES(k) obtained with thisalgorithm isamuch lessuncertai n representation of user
interests as proj ected on the knowledge contexts of the information resources queried, than the
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initial evidence set obtained in Section 4.1. The conversation algorithm |etsthe user reducethe
uncertainty from the al the perspectivesinitially available. The initial evidence set produced
in Section 4.1 includes all associated keywords in severa information resources. The
conversation algorithm allows the user and her knowledge context to select only the relevant
ones. Thus, the final ES(k) can be seen as a low-uncertainty linguistic category containing
those perspectives on the user’sinitial interest (obtained from the participating information
resources) which are relevant to the user and her knowledge context [6, 7].

Notice that this category is not stored in any location in the intervening knowledge
contexts. It is temporarily constructed by integration of knowledge from several information
resourcesand theinterests of the user expressed intheinteractive conversational process. Such
acategory istherefore atemporary container of knowledge integrated from and relevant for
the user and the collection of information resources. Thus, this algorithm implements many of
the, temporary, “on the hoof” [9] category constructions as discussed in [6].

4.3  Recommending Documents

After construction of thefinal ES(k), TalkMine must return to the user documentsrel evant
to this category. Notice that every document n, defines a crisp subset whose elements are al
the keywordsk € K which index n, in all the constituent information resources. The similarity
between this crisp subset and ES(K) is a measure of the relevance of the document to the
interests of the user as described by ES(K). This similarity is defined by different ways of
cal culating the subsethood [22] of one set in the other. Details of the actual operationsused are
presented in [7]. High values of these similarity measures will result on the system
recommending only those documents highly related to the learned category ES(K).

44  Adapting Knowledge Contexts

From the many ES(K) obtained from the set of users of information resources, we collect
information used to adapt the KSP and semantic distance of the respective knowledge
contexts. The scheme used to implement this adaptation is very simple: the more certain
keywords are associated with each other, by often being simultaneously included with a high
degree of membership in the final ESK), the more the semantic distance between them is
reduced. Conversely, if certain keywords are not frequently associated with one another, the
distance between them isincreased. An easy way to achievethisisto have the values of N(k;),
N(k) and N,(k;, k) as defined in formula (1), adaptively atered for each of the constituent r
information resources R. After ES(k) is constructed and approximated by a fuzzy set A(X),
these values are changed according to:

N'(k)= N'(k)+w.Ak),t=1..rk1 Ry E RE..ER (7)

and
th(ki,kj): Né(ki,kj)+W.min[A(ki),A(kj)],t:]___r,ki,k.i ROE RlE...ER )

where w is the weight ascribed to the individual contribution of each user. The adaptation
entailed by (7) and (8) leads the semantic distance of the knowledge contexts involved, to
increasingly match the expectations of the community of users with whom they interact.
Furthermore, when keywords with high membership in ES(k) are not present in one of the
information resources queried, they are added to it with document counts given by formulas
(7) and (8). If the simultaneous association of the same keywords keeps occurring, then an



information resource that did not previously contain a certain keyword, will have its presence
progressively strengthened, even though such keyword does not index any documents stored
in this information resource.

5 Collective Evolution of Knowledge with Soft Computing

TalkMinemodel sthe construction of linguistic categories. Such* onthehoof” construction
of categoriestriggered by interactionwith users, allowsseveral unrelated information resources
to be searched simultaneously, temporarily generating categories that are not really stored in
any location. The short-term categories bridge together anumber of possibly highly unrelated
contexts, which in turn creates new associations in the individual information resources that
would never occur within their own limited context.

Consider the following example. Two distinct information resources (databases) are
searched using TalkMine. One database contains the documents (books, articles, etc) of an
institution devoted to the study of computational complex adaptive systems (e.g. thelibrary of
the Santa Fe Institute), and the other the documents of a Philosophy of Biology department.
| am interested in the keywords GENETICS and NATURAL SELECTION. If | wereto conduct this
search a number of times, due to my own interests, the learned category obtained would
certainly contain other keywords such as ADAPTIVE COMPUTATION, GENETIC ALGORITHMS,
efc. Let me assume that the keyword GENETIC ALGORITHMS does not initially exist in the
Philosophy of Biology library. After | conduct this search a number of times, the keyword
GENETICALGORITHMSIscreated inthislibrary, eventhough it doesnot contain any documents
about thistopic. However, with my continuing to perform this search over and over again, the
keyword GENETIC ALGORITHMS becomes highly associated with GENETICS and NATURAL
SELECTION, introducing anew perspective of these keywords. From this point on, users of the
Philosophy of Biology library, by entering the keyword GENETIC ALGORITHMS would have
their own data retrieval system point them to other information resources such as the library
of the Santa Fe Institute or/and output documents ranging from “The Origin of Species’ to
treatises on Neo-Darwinism — at which point they would probably bar me from using their
networked database!

Given alarge number of interacting knowledge contexts from information resources and
users (see Figure 2), TalkMine is able to create new categories that are not stored in any one
location, changing and adapting such knowledge contexts in an open-ended fashion. Open-
endedness does not mean that TalkMineisableto discern all knowledge negotiated by its user
environment, but that itisableto permutate all the semantic information (K SPand d described
in Section 1) of the intervening knowledge contextsin an essentially open-ended manner. The
categories constructed by TalkMinefunction asasystem of collectivelinguistic recombination
of distributed memory banks, capable of transferring knowledge across different contexts and
thus creating new knowledge. In thisway, TalkMine can adapt to an evolving environment and
generate new knowledge given a sufficiently diverse set of information resources and users.
Readers are encouraged to track the development of this system at http://arp.lanl.gov.

TalkMine is a collective recommendation algorithm because it uses the behavior of its
usersto adapt the knowledge stored in information resources. Each time auser queries several
information resources, the category constructed by TalkMineisused to adapt those (cfr. Section
4). In this sense, the knowledge contexts (cfr. Section 1) of the intervening information
resources becomes itself a representation of the knowledge of the user community. A
discussion of this processis left for future work.

TalkMine is a soft computing approach to recommendation systems as it uses Fuzzy Set
and Evidence Theories, aswell asideasfrom Distributed Artificial Intelligenceto characterize




information resourcesand model linguistic categories. It establishesadifferent kind of human-
machine interaction in IR, as the machine side rather than passively expecting the user to pull
information, effectively pushes relevant knowledge. This pushing is donein the conversation
algorithm of TalkMine, wherethe user, or her browser automatically, selectsthe most relevant
subsets of this knowledge. Because the knowledge of communitiesis represented in adapting
information resources, and the interests of individuals are integrated through conversation
leading to the construction of linguistic categories and adaptation, TalkMine achieves amore
natural, biological-like, knowledge management of distributed information systems, capable
of coping with the evolving knowledge of user communities.
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